最新公告
  • 欢迎您光临立业阁,本站秉承服务宗旨 履行“站长”责任,销售只是起点 服务永无止境!立即加入我们
  • java多线程和并发面试题目(1~3题,附答案)_Java教程


    1、DeplayQueue延时无界阻塞队列

    在谈到DelayQueue的使用和原理的时候,我们首先介绍一下DelayQueue,DelayQueue是一个无界阻塞队列,只有在延迟期满时才能从中提取元素。该队列的头部是延迟期满后保存时间最长的Delayed元素。 (推荐学习:java面试题目

    DelayQueue阻塞队列在我们系统开发中也常常会用到,例如:缓存系统的设计,缓存中的对象,超过了空闲时间,需要从缓存中移出;任务调度系统,能够准确的把握任务的执行时间。我们可能需要通过线程处理很多时间上要求很严格的数据。

    如果使用普通的线程,我们就需要遍历所有的对象,一个一个的检查看数据是否过期等,首先这样在执行上的效率不会太高,其次就是这种设计的风格也大大的影响了数据的精度。一个需要12:00点执行的任务可能12:01才执行,这样对数据要求很高的系统有更大的弊端。由此我们可以使用DelayQueue。

    下面将会对DelayQueue做一个介绍,然后举个例子。并且提供一个Delayed接口的实现和Sample代码。DelayQueue是一个BlockingQueue,其特化的参数是Delayed。

    (不了解BlockingQueue的同学,先去了解BlockingQueue再看本文)Delayed扩展了Comparable接口,比较的基准为延时的时间值,Delayed接口的实现类getDelay的返回值应为固定值(final)。DelayQueue内部是使用PriorityQueue实现的。

    DelayQueue=BlockingQueue+PriorityQueue+Delayed

    DelayQueue的关键元素BlockingQueue、PriorityQueue、Delayed。可以这么说,DelayQueue是一个使用优先队列(PriorityQueue)实现的BlockingQueue,优先队列的比较基准值是时间。

    他们的基本定义如下

    public interface Comparable<T> {
        public int compareTo(T o);
    }
    public interface Delayed extends Comparable<Delayed> {
        long getDelay(TimeUnit unit);
    }
    public class DelayQueue<E extends Delayed> implements BlockingQueue<E> {
        private final PriorityQueue<E> q = new PriorityQueue<E>();
    }

    DelayQueue 内部的实现使用了一个优先队列。当调用 DelayQueue 的 offer 方法时,把 Delayed 对象加入到优先队列 q 中。如下:

    public boolean offer(E e) {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            E first = q.peek();
            q.offer(e);
            if (first == null || e.compareTo(first) < 0)
                available.signalAll();
            return true;
        } finally {
            lock.unlock();
        }
    }

    DelayQueue 的 take 方法,把优先队列 q 的 first 拿出来(peek),如果没有达到延时阀值,则进行 await处理。如下:

    public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            for (; ; ) {
                E first = q.peek();
                if (first == null) {
                    available.await();
                } else {
                    long delay = first.getDelay(TimeUnit.NANOSECONDS);
                    if (delay > 0) {
                        long tl = available.awaitNanos(delay);
                    } else {
                        E x = q.poll();
                        assert x != null;
                        if (q.size() != 0)
                            available.signalAll(); //wake up other takers return x;
                    }
                }
            }
        } finally {
            lock.unlock();
        }
    }

    DelayQueue 实例应用

    Ps:为了具有调用行为,存放到 DelayDeque 的元素必须继承 Delayed 接口。Delayed 接口使对象成为延迟对象,它使存放在 DelayQueue 类中的对象具有了激活日期。该接口强制执行下列两个方法。

    以下将使用 Delay 做一个缓存的实现。其中共包括三个类Pair、DelayItem、Cache

    Pair 类:

    public class Pair<K, V> {
        public K first;
        public V second;
        public Pair() {
        }
        public Pair(K first, V second) {
            this.first = first;
            this.second = second;
        }
    }

    以下是对 Delay 接口的实现:

    import java.util.concurrent.Delayed;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicLong;
    public class DelayItem<T> implements Delayed {
        /**
         * Base of nanosecond timings, to avoid wrapping
         */
        private static final long NANO_ORIGIN = System.nanoTime();
        /**
         * Returns nanosecond time offset by origin
         */
        final static long now() {
            return System.nanoTime() - NANO_ORIGIN;
        }
        /**
         * Sequence number to break scheduling ties, and in turn to guarantee FIFO order among tied
         * entries.
         */
        private static final AtomicLong sequencer = new AtomicLong(0);
        /**
         * Sequence number to break ties FIFO
         */
        private final long sequenceNumber;
        /**
         * The time the task is enabled to execute in nanoTime units
         */
        private final long time;
        private final T item;
        public DelayItem(T submit, long timeout) {
            this.time = now() + timeout;
            this.item = submit;
            this.sequenceNumber = sequencer.getAndIncrement();
        }
        public T getItem() {
            return this.item;
        }
        public long getDelay(TimeUnit unit) {
            long d = unit.convert(time - now(), TimeUnit.NANOSECONDS); return d;
        }
        public int compareTo(Delayed other) {
            if (other == this) // compare zero ONLY if same object return 0;
                if (other instanceof DelayItem) {
                    DelayItem x = (DelayItem) other;
                    long diff = time - x.time;
                    if (diff < 0) return -1;
                    else if (diff > 0) return 1;
                    else if (sequenceNumber < x.sequenceNumber) return -1;
                    else
                        return 1;
                }
            long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS));
            return (d == 0) ?0 :((d < 0) ?-1 :1);
        }
    }

    以下是 Cache 的实现,包括了 put 和 get 方法

    import javafx.util.Pair;
    import java.util.concurrent.ConcurrentHashMap;
    import java.util.concurrent.ConcurrentMap;
    import java.util.concurrent.DelayQueue;
    import java.util.concurrent.TimeUnit;
    import java.util.logging.Level;
    import java.util.logging.Logger;
    public class Cache<K, V> {
        private static final Logger LOG = Logger.getLogger(Cache.class.getName());
        private ConcurrentMap<K, V> cacheObjMap = new ConcurrentHashMap<K, V>();
        private DelayQueue<DelayItem<Pair<K, V>>> q = new DelayQueue<DelayItem<Pair<K, V>>>();
        private Thread daemonThread;
        public Cache() {
            Runnable daemonTask = new Runnable() {
                public void run() {
                    daemonCheck();
                }
            };
            daemonThread = new Thread(daemonTask);
            daemonThread.setDaemon(true);
            daemonThread.setName("Cache Daemon");
            daemonThread.start();
        }
        private void daemonCheck() {
            if (LOG.isLoggable(Level.INFO)) LOG.info("cache service started.");
            for (; ; ) {
                try {
                    DelayItem<Pair<K, V>> delayItem = q.take();
                    if (delayItem != null) {
                        // 超时对象处理
                        Pair<K, V> pair = delayItem.getItem();
                        cacheObjMap.remove(pair.first, pair.second); // compare and remove
                    }
                } catch (InterruptedException e) {
                    if (LOG.isLoggable(Level.SEVERE)) LOG.log(Level.SEVERE, e.getMessage(), e);
                    break;
                }
            }
            if (LOG.isLoggable(Level.INFO)) LOG.info("cache service stopped.");
        }
        // 添加缓存对象
        public void put(K key, V value, long time, TimeUnit unit) {
            V oldValue = cacheObjMap.put(key, value);
            if (oldValue != null) q.remove(key);
            long nanoTime = TimeUnit.NANOSECONDS.convert(time, unit);
            q.put(new DelayItem<Pair<K, V>>(new Pair<K, V>(key, value), nanoTime));
        }
        public V get(K key) {
            return cacheObjMap.get(key);
        }
    }

    测试 main 方法:

    // 测试入口函数
    public static void main(String[] args) throws Exception {
        Cache<Integer, String> cache = new Cache<Integer, String>();
        cache.put(1, "aaaa", 3, TimeUnit.SECONDS);
        Thread.sleep(1000 * 2);
        {
            String str = cache.get(1);
            System.out.println(str);
        }
        Thread.sleep(1000 * 2);
        {
            String str = cache.get(1);
            System.out.println(str);
        }
    }

    输出结果为:

    aaaa
    null

    我们看到上面的结果,如果超过延时的时间,那么缓存中数据就会自动丢失,获得就为 null。

    2、并发(Collection)队列-非阻塞队列

    非阻塞队列

    首先我们要简单的理解下什么是非阻塞队列:

    与阻塞队列相反,非阻塞队列的执行并不会被阻塞,无论是消费者的出队,还是生产者的入队。在底层,非阻塞队列使用的是 CAS(compare and swap)来实现线程执行的非阻塞。

    非阻塞队列简单操作

    与阻塞队列相同,非阻塞队列中的常用方法,也是出队和入队。

    offer():Queue 接口继承下来的方法,实现队列的入队操作,不会阻碍线程的执行,插入成功返回 true; 出队方法:

    poll():移动头结点指针,返回头结点元素,并将头结点元素出队;队列为空,则返回 null;

    peek():移动头结点指针,返回头结点元素,并不会将头结点元素出队;队列为空,则返回 null;

    3、非阻塞算法CAS

    首先我们需要了解悲观锁和乐观锁

    悲观锁:假定并发环境是悲观的,如果发生并发冲突,就会破坏一致性,所以要通过独占锁彻底禁止冲突发生。有一个经典比喻,“如果你不锁门,那么捣蛋鬼就回闯入并搞得一团糟”,所以“你只能一次打开门放进一个人,才能时刻盯紧他”。

    乐观锁:假定并发环境是乐观的,即虽然会有并发冲突,但冲突可发现且不会造成损害,所以,可以不加任何保护,等发现并发冲突后再决定放弃操作还是重试。可类比的比喻为,“如果你不锁门,那么虽然捣蛋鬼会闯入,但他们一旦打算破坏你就能知道”,所以“你大可以放进所有人,等发现他们想破坏的时候再做决定”。

    通常认为乐观锁的性能比悲观所更高,特别是在某些复杂的场景。这主要由于悲观锁在加锁的同时,也会把某些不会造成破坏的操作保护起来;而乐观锁的竞争则只发生在最小的并发冲突处,如果用悲观锁来理解,就是“锁的粒度最小”。但乐观锁的设计往往比较复杂,因此,复杂场景下还是多用悲观锁。首先保证正确性,有必要的话,再去追求性能。

    乐观锁的实现往往需要硬件的支持,多数处理器都都实现了一个CAS指令,实现“Compare And Swap”的语义(这里的swap是“换入”,也就是set),构成了基本的乐观锁。CAS包含3个操作数:

    需要读写的内存位置V

    进行比较的值A

    拟写入的新值B

    当且仅当位置V的值等于A时,CAS才会通过原子方式用新值B来更新位置V的值;否则不会执行任何操作。无论位置V的值是否等于A,都将返回V原有的值。一个有意思的事实是,“使用CAS控制并发”与“使用乐观锁”并不等价。CAS只是一种手段,既可以实现乐观锁,也可以实现悲观锁。乐观、悲观只是一种并发控制的策略。

    以上就是java多线程和并发面试题目(1~3题,附答案)的详细内容,更多请关注liyege.cn其它相关文章!

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
    提示下载完但解压或打开不了?
    最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。若排除这种情况,可在对应资源底部留言,或 联络我们.。
    找不到素材资源介绍文章里的示例图片?
    对于PPT,KEY,Mockups,APP,网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。
    • 1170会员总数(位)
    • 111858资源总数(个)
    • 2本周发布(个)
    • 0 今日发布(个)
    • 244稳定运行(天)

    提供最优质的资源集合

    立即查看 了解详情
    冀ICP备19022365号-1 百度地图

    [email protected]

    立业阁(www.liyege.cn)免费提供wordpress主题模板、dedecms模板、帝国cms模板、小说网站源码、电影网站源码以及网络技术分享,建站源码,小说模板,电影模板,网赚教程,VPS推荐